

Abstract— Current forensic tools highly depend on the analyst

awareness of evidences in order to retrieve them by means of a
proactive search methodology. This paper presents MONOCLE,
an open-source extensible framework for automated forensic
analysis. MONOCLE provides automation over the forensic
procedure by means of user-created plugins, reducing the
complexity of evidence retrieval in target’s machine hard disk
and memory. The software makes use of external tools such as
the Volatility Framework in order to provide extended
functionality to the executed plugins. To show the applicability of
the proposal, in this paper MONOCLE is applied to two user-
side cloud storage scenarios -- iCloud and Box. Results show that
MONOCLE is able to retrieve relevant information regarding
end-users systems and cloud services interaction in the client
machine.

Keywords— computer forensics, analysis, memory forensics,

software tools.

I. INTRODUCTION

COMPUTER forensics has proved to be a key factor for
criminal investigations and law enforcement, as IT devices are
increasingly more present in our society [1]. Such procedures
are of high importance not only in the elucidation of
traditional criminal cases where new technologies are present
as a helper tool for criminals to operate, but also in modern
crimes where IT devices are the main platform (e.g. illegal
distribution of copyrighted material or online fraud) [2].

 In order to conduct such investigations law enforcers make
use of a huge variety of forensic tools for the collection of
evidences. This is of particular interest because most best
forensic practices are standardized, so they can be done in an
algorithmic way (e.g. evidence integrity maintenance,
evidence classification or data carving). For example, Spanish
UNE 71506 describes a forensic analysis methodology [3]. It
is thus interesting to automate the collection of such elements
in order to speed up the whole process.

Most of the current forensic analysis tools (especially
privative ones, such as EnCase [4]) provide an interactive
interface to analyse the target system. By doing so the analyst
is able to perform a proactive analysis to find where relevant
information regarding the conducted case can be found. At the
same time, an overview of the overall system state is provided.
This can help the analyst to find new sources of information

J. Rodríguez-Canseco, J. M. de Fuentes, L. González-Manzano and A.

Ribagorda are with the Computer Security Lab (COSEC) of University
Carlos III of Madrid (Spain).

E-mail: {jorrodri, jfuentes, lgmanzan, arturo}@inf.uc3m.es

that he might not have appreciated at a first glance.
There is, however, a disadvantage within this paradigm,

namely the fact that the user has to manually select which
elements to categorize as evidences. Whether this can be
useful when conducting a non-deterministic case in which the
procedure to retrieve the evidences or their nature are not
clear, it is a tedious process when facing some cases in which
the traces to be found are quite standardized (e.g. traces
regarding the installation of a well-known program).

Although some tools provide a way to extend and
automatize user-defined procedures by means of scripts (e.g.
[5], [6]), this is not straightforward. Furthermore, it usually
implies buying a license for specialized programs. These
issues together with the fact that technologies are becoming
more complex as time goes by has also revealed some new
challenges for forensic analysis tools, being cloud forensics a
relevant one.

Cloud services are becoming popular among companies
and end users. The main reason is that a cloud environment
allows the use of hybrid hardware and systems in order to set
up virtual structures, which can be created, modified and
destroyed on users demand. Cloud systems are traditionally
structured into three main categories depending on the service
model they provide, namely Software as a Service (SaaS),
Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS) [7].

Such structures include a brand new set of problems for
law enforcers in order to conduct the analysis [8], which range
from the geographical dispersion found within cloud service
infrastructure (i.e. resulting in different jurisdictional issues)
to the fact that physical machines might hold data from
different individuals, (i.e. resulting into potential privacy and
confidentiality problems). Several approaches have been
tested as to overcome such issues [9]. There are differences
however in the complexity involved within the analysis for
each of the aforementioned services (SaaS, PaaS and SaaS).

More specifically, cloud storage services based on a SaaS
model present one of the most interesting targets for forensic
analysis as the number of users and the amount of data in such
platforms is increasing [10]. They also do provide a promising
window for forensic analysts due to the fact that they tend to
leave high numbers of data remnants in end users machines
[11]. Such end users access these services by means of
personal computers or mobile devices, which do not present
the issues existing in cloud forensics.

This context would make useful the existence of an open
source tool able to conduct forensic procedures applying
automated scripts. The existence of such software would avoid
organizations and individuals affording the expensive licenses

J. Rodriguez-Canseco, J. M. de Fuentes, L. González-Manzano, A. Ribagorda

MONOCLE – Extensible open-source forensic
tool applied to cloud storage cases

of commercial forensic tools.
This paper presents MONOCLE, an open source

framework for forensic analysis implementing an extensible
script-driven system. The software targets relevant sources of
information on IT systems, such as volatile memory dumps
and disk images. This framework is used afterwards to study a
pair of user-side cloud scenarios in different platforms,
namely iCloud [12] and Box [13]. This implies that several
modules will be created both to test the effectiveness of the
framework when targeting those scenarios and to study the
scenarios as such.

The structure of this paper is as follows: Section II present
a summary of related work in the scope of forensic analysis
tools and user-side cloud forensics. Section III introduces the
necessary background knowledge to understand user-side
cloud scenarios. Section IV presents the forensic analysis
framework and its workflow at a high level. Section V depicts
and describes the detailed design of the framework. In Section
VI the application of the proposed framework to a user-side
cloud scenario is presented. Section VII compares
MONOCLE against existing tools. Finally, conclusions and
future work is outlined in Section VIII.

II. RELATED WORK

Previous research contributions have addressed cloud
forensics and their peculiarities regarding traditional forensics
problems, such as jurisdictional issues and privacy concerns.
Most of this literature focuses on the study of the open
problems and possible improvements in cloud structures rather
than in the actual forensic analysis of cloud systems within the
current architectures. Zawoad et al. [9], and Shah et al. [14]
discuss the different problems inherent to cloud systems
regarding digital forensics. Almulla et al. propose different
approaches to provide forensics friendly cloud services [15],
but such solutions require cloud service providers to adopt
them and do not solve the problem in the short term scope.

The increasing number of users of the SaaS cloud
architectures in which data storage is offered as a service has
motivated the research on this specific area. Quick et al. [16]
provide an extensive listing of traces left on client machines
by different cloud storage platforms, such as Dropbox [11],
Google Drive [17] Microsoft SkyDrive [18] or ownCloud
[19], found by means of different forensic tools. Such studies
reveal the utility of client-side forensics in which they call
Storage as a Service (StaaS) platforms.

A. On software tools
Most commercial tools provide a wide set of procedures in

order to recover data evidences, such as data carving [20] and
memory data analysis [21]. These tools are implemented
following an approach which requires the user interaction to
retrieve items considered as evidences. This is done in order
to allow the required flexibility when conducting forensic
investigations (i.e. as there are a broad number of
interpretations an analyst might give to an evidence element
depending on the context of the conducted case).

Such tools can be classified in several ways depending on
their nature, e.g. being commercial software or freeware.
Commercial software tools are usually more complete than
their free counterparts, and thus include a broader set of
features.

Among commercial tools, some of the most relevant ones
due to the amount of provided features are EnCase Forensics
[4] by Guidance Software, FTK (Forensic ToolKit) [22], from
AccessData, or Pro Discover [23], from the ARC group of
NY. Another interesting software due its relationship with the
context discussed in the present paper is IEF (Internet
Evidence Finder) [24], from Magnetic Forensics, as it
performs forensic analysis of internet services.

On the other hand, open source tools have a more limited
scope in terms of analysis targets and capabilities. There exists
however several powerful tools to perform forensic analysis,
such as The Sleuth Kit [25], by Brian Carrier (disk image
analysis), the Volatility Framework [26], by Volatility
Foundation (memory analysis) or Simsong’s Bulk Extractor
[27] (disk data carving).

III. CLOUD FORENSICS

Cloud computing can be divided in two different parts,
namely the front end, that is based on a client’s computer and
the back end, which consists of one or multiple computers,
servers and data storages [28]. Moreover, cloud servers may
be used by huge amount of users or entities and the
appropriate management has to be provided. Likewise, servers
or data storages can be spread all over the world and their
management has to be carried out according to laws
established in their particular location as well as guaranteeing
availability even when failures occur.

Figure 1. MONOCLE in the cloud infrastructure

Cloud systems are a popular choice due to their fast

resource allocation and elasticity capabilities. They use hybrid
hardware and virtualization to reduce overall costs [29].
Although this versatility is quite useful for companies, in
terms of computer forensics the nature of the cloud
environment makes difficult forensic analysis using traditional
procedures. Besides, forensic analysis in cloud servers may
become a burden due to their location and the amount of
possible clients together with applicable laws.

As aforementioned, given that cloud forensics is hard to
analyze from the back end (server-side) point of view,

MONOCLE
Cloud System

CLIENT-SIDE SERVER-SIDE

MONOCLE addresses computer forensics from the front end
(client-side) perspective (see Figure 1). Data stored and
managed in the cloud is accessed by clients, e.g. a browser or
desktop application.

A. User-side cloud forensics
Cloud storage platforms usually provide two different ways

to access their services. The first one is the access by means of
a web application using a web browser. Such application
allows the user to remotely interact with stored data within the
server. In addition to the web browser, most of cloud storage
service providers have a synchronization client program which
updates data on the server side based on changes performed at
client-side.

This interaction from the client-side exposes a series of
evidences, which can be potentially meaningful for
investigators. Three different levels of relationship between
the user and the cloud service can be defined as to quantify the
amount of potential evidences to be found during the analysis:

• Access the cloud service through a web browser. Data

remnants are found mainly within the web browser
history and RAM memory.

• Access the service through a cloud sync program. Data
remnants are related to the installation and operations of
the synchronization program.

Different sets of artifacts can be elicited for each of the

levels described. Such artifacts analysis provides a source of
potential evidences. The relation amongst different artifacts
will likely reveal meaningful information to the conducted
investigation.

Regarding what can be found in memory, one of the most
relevant evidences to carve are the URLs associated to the
web interface of the cloud services. Memory-mapped
structures such as registry keys are also valuable as they might
contain data regarding to the web browser (e.g. URLs recently
typed and temporal files downloaded or visualized within the
browser).

The analysis of the disk image provides more information
than memory analysis. Temporal files are stored in each web
browser folders. All registry hives are usually present. The
most interesting refers to traces left by a newly installed
program which are easy to identify. In this context, the
installation folder of the program, the different registry keys,
which have been modified by the software, and all data the
tool is syncing with the cloud service are potential sources of
information. System logs are also valuable as they provide a
way to track changes within the system.

Once searched evidences to look for are stated, tools
provided by MONOCLE can be applied as to retrieve the
specific elements for each case.

IV. SYSTEM OVERVIEW

A. Goals
In this section the main goals pursued in MONOCLE’s

design are described.
The main objective of the present paper is the creation of a

utility framework (MONOCLE) for the development of
automated analysis on third party target machines. Many of
the current tools (recall Section II) in the forensic analysis
field are either commercial software, or present a limited
scope in terms of evidence sources. In this respect, the
proposed tool would target main evidence sources present on
IT devices, e.g. namely volatile memory dumps and disk
images.

In addition to that, most of tools do provide a proactive
(interactive) search paradigm. This stands for the fact of the
tool carving data in different areas, and presenting it to the
analyst so as for him to select elements to categorize as
evidence. This is a time-consuming process when facing data
retrieval of well-known elements, such as program installation
data or web access history. By contrast, MONOCLE provides
a script-based analysis procedure. This implies that the
analyst, targeting specific well-known elements, can code
several modules. Such plugins can be reused in further
investigations with minimum effort, speeding up the analysis
process and reducing the analyst manual workload. In this
respect, it is necessary for the tool to be extensible as to adapt
new needs of the analyst. Besides, MONOCLE detects and
loads seamessly new scan plugins (i.e. scripts) without
incuring into extra efforts to the user.

Due to this need of extensibility, the proposed software
includes several utility tools which can be used in order to
speed up the creation of plugins. Such utilities include
automatic evidence management, RAM memory
reconstruction, registry hives parsing, and visual timeline
representation of results.

Finally, the implementation of a GUI for the easy of use
and the release of the tool under an open source license are
also current objectives.

B. High level functionality
The framework is intended to run user-created plugins,

which will perform different analysis over the evidence
sources. Although the user can create its own plugins, there is
the possibility of download plugins created by other users.

Monocle loads evidence sources from different data dumps.
In its curret version MONOCLE process raw format RAM
memory dumps and disk images. Once the user has selected
an evidence source, it is necessary to state wether it is a Disk
image or a memory dump. Plugins differ depending on the
type of the source. Available plugins can be choosen by the
user in order to execute them over the selected evidence
source.

A different process occurs in order for the framework to
access each type of evidence source. Disk images are mounted
using system-specific commands. This process is performed in
read-only mode so as to preserve data integrity. Memory

dump images are treated as regular files, being the user plugin
the one choosing how to interact with them.

Apart from functionalities provided by each user plugin,
the framework performs, without the requirement of user
interaction, some of the standardized tasks common to any
digital crime scene investigation phase (e.g. integrity checking
and secure storage of evidences) [30]. To do so an evidence
manager has been developed and integrated in MONOCLE.
This manager provides digital-feasible documentation of the
evidence (e.g. retrieving data such as evidence location within
the digital container or metadata) and evidence data recovery.
Such recovery includes a copy of the evidence element (if
possible) on a local directory within the analyst machine, as
well as optional comments made by the analyst. Besides,
evidence integrity is achieved by means of automatic
computing of both MD5 and SHA1 checksums over the
evidence element.

MONOCLE provides additional tools which can be used
during the scripts. Such tools are integrated within a simple
interface as to simplify their usage. For this first version of the
software, only one auxiliary tool for each target type will be
implemented.

Regarding memory-targeted modules, the Volatility
Framework is applied to analyse such evidence dumps. The
integration of this system within the present framework allows
plugins to use the whole Volatility functionality over a
simplified interface. Results coming from Volatility scripts are
returned to the user script as a data array set. Regarding disk-
targeted scripts, Windows registry analyzer is one of the most
useful tools. This allows the user plugin to be able to extract
information from the Windows registry, which is one of the
most interesting elements to analyze in Windows systems
[31]. Python Registry library by Will Ballenthin [32] is
applied in MONOCLE to provide such functionality.

Figure 2. MONOCLE workflow

Regarding the execution of the framework, plugins are
executed once the user has selected both the plugin to run and
the evidence digital container to analyze (e.g. either a disk
image or a memory dump). Subsequently, the framework
starts working in order to execute the chosen plugin. Figure 2
depicts the general workflow of the framework when
executing a user module.

 The framework prepares the analysis environment in order
to start the plugin (1) (e.g. evidence secure mounting and
parameter parsing). Once the user plugin is executing, there

are two possible ways interact with the evidence source,
namely to accessing directly the evidence source (2), or
making use of one of the built-in tools (3) through the
framework interface (e.g. the Volatility Framework). This
process can be repeated as many times as needed (4) until the
analysis finishes. Finally (5) the evidence manager acts over
each single evidence, providing integrity checking, local
allocation and indexing such evidence to present a summary
of the analysis.

V. SOFTWARE DESIGN

Applied technology has to be carefully considered because
it affects the internals of the system as well as framework
scripts by applying a set of constraints over the plugin
development procedure. The Python programming language
has been chosen due to its versatility and cross-platform
attributes. Python provides an effective fast-prototyping
approach useful for further plugin development. MONOCLE
has been coded using JetBrains’ PyCharm [33] development
environment as to help in the organizing of the overall project.

Regarding the functionality defined in the previous section,

Figure 3 depicts MONOCLE components. The tool is divided
into four components with well-defined functionality each.

The main framework functionality is located in the Core
component. This part of the system does not depend on the
user modules employed. The Core component is in charge of
loading the user modules to be executed within the
framework, as well as the utility classes the user module can
make use of. The SetupHandler component registers different
analysis parameters, which can be parsed either by means of
the GUI or through command line execution. It is also
responsible for setting up MONOCLE’s required starting
environment. The wrapper component within the core creates
an abstraction layer for plugins and manages evidence data
extracted by the modules. The loading procedure differs
regarding target type of the module to load (i.e. either a
memory dump or a disk image). Report management and
evidence management data are parsed to the XMLParser
component to generate summaries.

The MemoryModule and HDModule are two different
interfaces, used to load the user plugin. The main difference
between them stands for the auxiliary tools to load. Whether a
memory-targeted plugin (i.e. making use of the
MemoryModule interface) is able to use the Volatility
Framework by means of the VolActor component, a disk-
targeted plugin is only able to load the registry module by
means of the RegistryActor component. Both module
interfaces will create an EvidenceManager to process found
evidences along plugins execution.

Volatility Framework features are accessed through the
VolActor component, which is in charge of loading and
automatically configuring the Volatility Framework into the
Monocle Framework. This component can be loaded on
demand by an plugin during its execution, and it provides
auxiliary functions with methods to call the different Volatility

CORE
TRIGGER EVIDENCE

MANAGER

EVIDENCE
SOURCE

USER
PLUGINS

SECURE
EVIDENCE

SUMMARY
GENERATION

VOLATILITY
FRAMEWORK

End?

Yes

NoREGISTRY
ANALYZER

1

2

3
4

5

Plugins included in the Volatility installation framework.
Memory type identification is performed if unknown. The
RegistryActor works similarly with the Python Registry
plugin, providing commodity methods as to retrieve data from
memory hives.

Users have freedom to code the plugin as desired. The only
requirements is to include MONOCLE’s libraries in the plugin
code and inherit from either a HDModule or a MemoryModule
to use specific module tools (e.g. VolActor, RegistryActor,
EvidenceManager).

VI. EVALUATION

This section first compares the features provided by
existing well-known tools with the ones provided by
MONOCLE (Section A). Secondly, Secondly, MONOCLE is
applied in a pair of cloud scenarios, namely, iCloud and Box.
Lastly, a performance evaluation in regard to both previous
scenarios is presented (Section B). Lastly, a performance
evaluation in regard to both previous scenarios (Section C).

A. Goals analysis comparison
This comparison is performed according to the different

features stated in the pursued objectives (Section IV.a):

• Privative Software. Whether the software is a free-to-use

tool or a commercial one. MONOCLE is an open-source
(free of charge) software.

• GUI Interface Available. Whether the interaction with
the tool can be performed by means of a graphical user
interface or not. Our framework provides a GUI, namely
by MonocleGUI component (see Section V).

• Target. Whether the tool targets memory dumps or disk
images as evidences sources. MONOCLE targets both
memory dumps and disk images in RAW format.

• Interactivity / Proactive analysis. Whether the tool

allows the analyst to operate over the results and to
perform different analysis over the image in a non-
deterministic way. This is the opposite of a scripting
deterministic analysis where the tool has a predefined set
of operations. MONOCLE focuses in script-based
analysis.

• Scripting Capability. Whether the tool has the capability
of execute user-defined scripts, which perform different
analysis or procedures sequentially without user
interaction. MONOCLE is script driven.

• Extensibility. Whether the original functionality of the
system can be enhanced by means of tools provided by
the system itself. MONOCLE’s scripting-based nature
provides extensibility to the framework.

• Extensibility type. How extensibility is performed within
the given application if the application allows for an
extensible behavior. MONOCLE provides extensibility as
it allows to include new plugins on the fly.

There are hybrid combinations of such features depending

on the tool. Table 3 depicts the analyses.
EnCase Forensic, developed by Guidance Software [4],

provides a broad number of utilities, such as data carving, and
automatic generation of reports. EnCase also counts with its
own scripting language in order to automate different tasks
and extend its functionality depending on the analyst needs.
EnCase is however a commercial software. Another
interesting yet similar tool is FTK [22] by AccessData. This
tool provides similar functionality as EnCase and it allows
visualization of data in real time, multiple source image
detection and automatic password recovery from a big set of
applications, among others. Like EnCase, FTK is a non-free
application.

Figure 3. MONOCLE High level decomposition diagram

Additional
Components

System

CoreGUI

User
Plugins

GuiModuleHandler

Plugin

Registry
Actor

«Async. Interacts»

HDModule

VolActor
SetupHandler

«Loads»

«Loads»

«Loads»

«Loads»

Timeline_module

Monocle
GUI

XMLParser

Wrapper EvidenceManager

MemoryModule

«Loads»

Internet Evidence Finder (IEF), by Magnetic Forensics, is a

specialized tool focused on the discoverage of data remnants
of Internet services, such as email, web navigation and cloud-
based storage. Alhough quite complete, this is yet another
commercial tool.

Regarding open-source forensic software, The Volatility
Framework is another interesting tool. It provides memory
forensics services off the shelf, such as open connections
enumeration and running processes carving. Although
Volatility was initially a framework to perform analysis over
memory dumps on Windows machines, contributions from the
open source community allows now Volatility to target also
some versions of Linux and Mac OSX. Volatility also offers a
plugin-oriented execution model, allowing its extensibility
with new functionalities by means of user scripts written in
Python. However, Volatility Framework scope does not
involve disk images analysis and a different tool should be
used in this regard, e.g. Sleuth Kit [25] is one of the most
popular ones.

The Sleuth Kit (TSK) consists of a set of tools for forensic
investigations over disk images. TSK is an open-source
project whose functionality can be used by means of a library
or executed as a standalone application. A GUI for TSK is
provided by Autopsy [34] project, by Basis Technology. It is
however focused only on disk images, not being able to relate
memory artifacts to the conducted investigation.

When coming to analyze each of these tools, differences
between commercial software and open-source projects are
quite noticeable in terms of scope. Whether commercial
software usually targets more than one evidence source (e.g.
RAM memory and disk artifacts), open source projects usually
target a single source because resources are more limited.

Additionally, MONOCLE provides better low level
analysis of the results, as found evidences can be
automatically classified and processed. If the applied plugin
already exists, the analyst can execute it without dealing with
low level details. This saves time and effort in the
investigation process. Besides, MONOCLE provides users the
ability to easily create new plugins if needed.

B. Application to cloud scenarios
MONOCLE is flexible enough to perform a wide variety of

types of analysis. It depends on the user module being
executed. In the present context, it is used in a user-side cloud
scenario namely in iCloud [12] and in Box [13] cloud storage
services. The objective is to analyze the interaction with the
storage services by analizing disk and memory dumps of
client’s machine.

 1) Definition of the scenarios

Two different cloud platforms are evaluated to prove the
suitability of the framework for the cloud-based scenario,
namely iCloud, by Apple Inc. and the cloud service of Box.
Two different modules re developed for each scenario, one
focused on RAM memory and another one focus of disk
remnants. The objective of the investigation is to prove the
interaction between the user and the cloud service, and to
retrieve as much information as possible (i.e. downloads,
visits, hosted files).

The preparation of these analyses follows a similar
approach to the one proposed by Quick et al. [11], [17], [18].
Both analyses are conducted under a Windows 7 x64 system
emulated through a VMWare Virtual Machine. No additional
software is installed except for the web browser (i.e. namely
Internet Explorer 11) which is used to test the web clients of
the different platforms and the installation of the platform
third party client on each case. Accounts for the different
platforms are created outside the virtual machines, limiting the
interaction of the user to a single connection to the service in
order to either view the files or download and install the client.
From each virtual machine, the RAM memory and the virtual
hard disk are analyzed as raw dumps.

 2) Identification of the traces

Traces to be found in both scenarios involve several
different elements, ranging from URLs with specific formats
(e.g. all Box cloud services URLs have a fixed starting pattern
of the form app.box.com) to SQLite databases and
configuration files containing information for each specific
platform.

Cloud-related traces are particularly noticeable when using

Table 1. Comparision of different tools regarding their usability and extensibility features.

a synchronization program. Installation fingerprint can be
found in the Registry, Windows Logs and other control
elements present on a Windows system. Such installation also
involves the creation of the synchronization folder, which
potentially contains elements residing in the cloud storage
platform.

The implementation of MONOCLE’s scripts to recover
evidences requires, it is necessary to take into account all
traces and to specify them in the plugin in order for
MONOCLE to find them. The complete set of traces found for
both scenarios is described in Appendix I.

 3) Implementation of the plugins

Memory analysis can be performed either by means of the
Volatility Framework or by manually carving files contained
in the memory dump. The chosen approach depends on the
existence or not of a running web browser process. If a web
process exists, it is possible to acquire the reconstructed
allocated memory of such process applying Volatility’s
MemDump plugin. It allows the reconstruction of the
fragmented memory belonging to the process in a
continuously allocated dump. Search of URL’s can be then
performed over this reconstructed memory space. In case the
process cannot be found, the whole memory dump has to be
carved as to find those URLs.

Volatility also provides a way to retrieve Internet Explorer
history if the process was running when the memory was
acquired (i.e. namely IEHistory plugin). Finally, registry keys
mapped into memory are extracted using the hivescan, hivelist
and printkey modules.

Regarding the analysis of the disk drive, Monocle
automatically tries to mount the targeted disk. Once it is
mounted, the plugin starts running and marks as evidences
chosen files, folders and elements through the
EvidenceManager. This module translates paths to the local
equivalent within the disk. All evidences retrieved in this way
can either be manually labeled by the user, or automatically be
classified by the EvidenceManager. Moreover, the
EvidenceManager automatically calculates integrity
checksums for all found evidence elements, and stores them in
a secure folder within the host system.

Registry keys can be easily parsed and analyzed by means
of the Python-Registry library integrated within the
framework. MONOCLE implements an interface to such
library to provide the user with straightforward functions able
to retrieve the Registry keys by just specifying the path to the
registry hive and the desired key (or sub-keys) to extract.

C. Performance evaluation
Concerning previous scenarios (iCloud and Box), the

overhead caused by MONOCLE is measured. Specifically,
time measurements from states of the execution are studied.
MONOCLE execution workflow is divided in three main
phases, (recall Figure 2). The first phase (wrapper pre-setup)
consists of setting up MONOCLE’s environment and
mounting the evidence digital containers. The second phase
(module execution) is the execution of the plugin. In the last

phase (wrapper post-setup) the EvidenceManager processes
evidences found in the second phase and presents the results to
the user.

Table 2 shows times for plugins described in Section VI.B.
to analyse disk and memory for Box and iCloud. Modules use
MONOCLE tools to retrieve evidences. In addition, a Box
memory plugin not using Volatility was created to show
Volatility’s overhead during execution.

Table 2. iCloud metadata remnants

Results show that executed plugins leverage overall

running time, which implies MONOCLE’s overhead is almost
neglectable regarding execution times. This overhead is more
noticeable for disk modules, 57,3% and 15,6% of the overall
time for Box and iCloud respectively. Memory-targeted
modules reconstruct the memory address space of the machine
(if using Volatility) and perform a complete scan of the
memory dump. Such operational charge results in higher
module execution time than for disk modules. MONOCLE’s
overhead is thus small in memory modules, being 1,8% for
Box module running Volatility and 0,6% for the one not using
Volatility. MONOCLE’s overhead on iCloud memory module
is 1,25%. Disk-targeted plugins overhead seems higher than
memory ones. This fact is because disk plugins neither
perform data carving nor have to search the entire digital
container.

Significant differences exist between times of the module
execution phase, as this stage depends directly on executed the
plugin. It is interesting to notice the overhead of using
Volatility on a memory targeted plugin, e.g. Box plugin not
using Volatility is 8 times quicker than the version using
Volatility to reconstruct the memory space.

VII. CONCLUSIONS AND FUTURE WORK

In this paper MONOCLE, a framework for forensic
analysis on a plugin-based execution model is presented. This
framework is intended to provide fast prototyping of efficient
forensic analysis over well-known structures by the use of
plugins. Its functionality is apply to evaluate user-side cloud
storage scenarios in two particular cases, namely iCloud and
Box. This evaluation has additionally proved the importance
of such remnants regarding cloud-based storage, as several
traces relating the user and the platform are to be found in the
client machine.

Our proposed tool is on its very first development stage.
There are thus several improvements to be apply. The

inclusion of the TSK Framework within MONOCLE, so as to
provide all the functionality available in such open source tool
is a future enhancement. The disk carving capabilities of TSK
and the automated evidence mounting of corrupted images are
features of interest concerning the improvement of disk
images plugins. The processing of proprietary and compressed
evidence sources is currently out of the scope of this tool
regarding its first version. Support for different formats is a
future objective for MONOCLE. The inclusion of plugin-
sharing capabilities of the framework by creating a centralized
knowledge base where plugins can be uploaded and
downloaded by different users is another matter to address in
the future. This would reduce time and effort and facilitate
collaboration among different analysts.

VIII. REFERENCES

[1] L. Ericsson, “More than 50 Billion Connected
Devices,”
www.ericsson.com/res/docs/whitepapers/wp-50-
billions.pdf , no. February, 2011.

[2] A. Guinchard, “Cybercrime: The Transformation of
Crime in the Information Age,” Information,
Communication & Society, vol. 11, no. 7. pp. 1030–
1032, 2008.

[3] “AENOR. UNE 71506. Accessed 06/09/2015 at
http://www.aenor.es/aenor/normas/normas/fichanorma
.asp?tipo=N&codigo=N0051414#.VXcbfmCkaQw.” .

[4] G. Software, “Encase Forensic v7. Accessed
03/17/2015, at
https://www.guidancesoftware.com/products/Pages/en
case-forensic/overview.aspx,”
https://www.guidancesoftware.com/products/Pages/en
case-forensic/overview.aspx. .

[5] “EnCase EnScript programming. Accessed
06/09/2015 at
https://www.guidancesoftware.com/training/Pages/cou
rses/classroom/EnCase®-EnScript®-
Programming.aspx.”

[6] “The Sleuth Kit pipeline system. Accessed 06/09/2015
at http://www.sleuthkit.org/sleuthkit/framework.php.”

[7] W.-T. Tsai, X. Sun, and J. Balasooriya, “Service-
Oriented Cloud Computing Architecture,” 2010
Seventh Int. Conf. Inf. Technol. New Gener., pp. 684–
689, 2010.

[8] D. Birk and C. Wegener, “Technical issues of forensic
investigatinos in cloud computing environments,”
Syst. Approaches to Digit. Forensic Eng., 2011.

[9] S. Zawoad and R. Hasan, “Cloud Forensics: A Meta-
Study of Challenges, Approaches, and Open
Problems,” arXiv Prepr. arXiv1302.6312, pp. 1–15,
2013.

[10] D. J. Abadi, “Data Management in the Cloud  :
Limitations and Opportunities,” Bull. IEEE Comput.
Soc. Tech. Commitee Data Eng., pp. 1–10, 2009.

[11] D. Quick and K. K. R. Choo, “Dropbox analysis: Data
remnants on user machines,” Digit. Investig., vol. 10,
no. 1, pp. 3–18, 2013.

[12] Apple Inc., “iCloud. Accessed 04/20/2015 at
https://www.icloud.com.,” iCloud. Accessed
04/20/2015 at https://www.icloud.com. .

[13] Box, “Box Cloud. Accessed 20/04/2015 at
https://app.box.com.”

[14] J. J. Shah and L. G. Malik, “Cloud Forensics: Issues
and Challenges,” 2013 6th Int. Conf. Emerg. Trends
Eng. Technol., pp. 138–139, 2013.

[15] S. Almulla, Y. Iraqi, and A. Jones, “Cloud forensics:
A research perspective,” in 2013 9th International
Conference on Innovations in Information
Technology, IIT 2013, 2013, pp. 66–71.

[16] D. Quick, B. Martini, and K.-K. R. Choo, Cloud
Storage Forensics. 2014.

[17] D. Quick and K. K. R. Choo, “Google drive: Forensic
analysis of data remnants,” J. Netw. Comput. Appl.,
vol. 40, pp. 179–193, 2014.

[18] D. Quick and K. K. R. Choo, “Digital droplets:
Microsoft SkyDrive forensic data remnants,” Futur.
Gener. Comput. Syst., vol. 29, no. 6, pp. 1378–1394,
2013.

[19] B. Martini and K. K. R. Choo, “Cloud storage
forensics: OwnCloud as a case study,” Digit. Investig.,
vol. 10, no. 4, pp. 287–299, 2013.

[20] A. Pal and N. Memon, “The evolution of file carving,”
IEEE Signal Process. Mag., vol. 26, no. 2, pp. 59–71,
2009.

[21] R. B. van Baar, W. Alink, and A. R. van Ballegooij,
“Forensic memory analysis: Files mapped in
memory,” Digit. Investig., vol. 5, no. SUPPL., 2008.

[22] Access Data, “FTK. Accessed 12/05/2015 at

http://accessdata.com/solutions/digital-
forensics/forensic-toolkit-ftk/capabilities.”

[23] The ARC group of NY, “Pro Discover. Accessed
21/05/2015 at
http://www.arcgroupny.com/products/prodiscover-
forensic-edition/.”

[24] Magnet Forensics, “Internet Evidence Finder.
Accessed 21/05/2015 at
http://www.magnetforensics.com/mfsoftware/internet-
evidence-finder/.”

[25] B. Carrier, “The Sleuth kit. Accessed 05/04/2015 at
http://www.sleuthkit.org/sleuthkit/.”

[26] Volatility Foundation, “Volatility Framework.
Accessed 12/05/2015 at
http://www.volatilityfoundation.org/#!releases/compo
nent_71401.”

[27] “Bulk Extractor. Accessed 21/05/2015 at
https://github.com/simsong/bulk_extractor.”

[28] Y. Jadeja and K. Modi, “Cloud computing - Concepts,
architecture and challenges,” 2012 Int. Conf. Comput.
Electron. Electr. Technol. ICCEET 2012, pp. 877–
880, 2012.

[29] P. Mell and T. Grance, “The NIST Definition of
Cloud Computing Recommendations of the National
Institute of Standards and Technology,” Natl. Inst.
Stand. Technol. Inf. Technol. Lab., vol. 145, p. 7,
2011.

[30] B. Carrier and E. Spafford, “Getting physical with the
digital investigation process,” Int. J. Digit. Evid., vol.
2, no. 2, pp. 1–20, 2003.

[31] K. Alghafli, A. Jones, and T. Martin, “Forensic
Analysis of the Windows 7 Registry.,” J. Digit. …, p.
17, 2010.

[32] W. Ballenthin, “Python-Registry. Accessed
04/10/2015 at
http://www.williballenthin.com/registry/,”
http://www.williballenthin.com/registry/, 2014.
[Online]. Available:
http://www.williballenthin.com/registry/.

[33] JetBrains, “PyCharm. Accessed 16/05/2015 at
https://www.jetbrains.com/pycharm/.”

[34] Basis Technology, “Autopsy Project, accessed

12/05/2015 at http://www.basistech.com/digital-
forensics/autopsy/.”

APPENDIX I

This appendix presents evidences discovered by
MONOCLE’s plugins described in Section VI.C.

A. Data remnants in Box cloud storage
Box cloud services provide storage capabilities within the

cloud. Users can use the service by registering with an email
account. This section presents traces left on client’s machines
memory and disk when accessing Box services.

Box cloud services URLs have a fixed starting pattern of
the form app.box.com. The existence of this sole URL in the
web browser memory address is not enough to state that there
is a relationship between the user and the platform. This URL
can also be found in the registry hives storing the recent
visited URL. The extraction of them can be done by means of
the Volatility Framework too, as it includes a plugin to
retrieve registry hives mapped into memory. Registry keys can
be accessed more easily from the disk as their location is well
known..

Box URLs are however meaningful by their sole
composition. The structure of Box web cloud service
organizes all files previewed with a URL of the form
app.box.com/files/0/f/0/1/f_[ID], where ID is a numerical
value assigned by Box to the stored files. This identifier
allows referencing such files within the memory dump.

Further analysis shows that the file metadata stored within
the platform is sent to the browser in the form of a JSON
structure. This structure has several meaningful fields such as
the file ID and the file owner ID. Most relevant fields are
depicted in Table 2.

The analysis of disk artifacts comprehend hosted disk files
(i.e. images, text files...) as well as registry hives and temporal
cached elements.

Study of memory artifacts already unveiled some traces
present in the disk too. As part of files metadata, it is
interesting to look at the image tag, which represents the name
of the temporal file cached in the web browser temporal
folder. By looking for such name in the aforementioned
location, files metadata and the files themselves are found.

The registry hives are also a potential source of information
here. Some of them are of particular interest, such as
SOFTWARE\Box\BoxSync\InstallID, which specifies the
identification number assigned by the system to the sync
program when it was installed in the machine, SOFTWARE\
Box\BoxSync\InstallID\InstallPath, which specifies the path
of the Box Sync installation files within the system. NTUSER\
Software\Microsoft Internet Explorer\TypedURLs, containing
URLs typed by the user in Internet Explorer and NTUSER\
Software\Microsoft\WindowsNT\CurrentVersion\AppCompat
Flags\CompatibilityAssistantPersisted, which contains a list of
files names downloaded from the browser.

In case the sync program is installed within the browser,
the installation path (i.e. by default ProgramFiles\Box\Box

Sync) contains installation information. Specific elements of
the user configuration are located under \Users\[user]
\AppData\Local\BoxSync folder. This folder contains Box’s
own logs and SQLite databases with the synced files. Besides,
Box Sync folder is available too (i.e. by default under
\Users\[user]\Box Sync path.), containing all the synced files.

Table 3. Box metadata remnants

B. Data Remnants in iCloud cloud storage
Data can be extracted from the web browser process

memory address, this finding mapped files or URLs of the
iCloud service. Following the same approach as in Box,
though being more complex, an authorization token is
requested for each single file. These tokens are invalidated
after a certain amount of time, and are given to iCloud web
API through HTTP. The requests to iCloud web also contain a
set of attributes as parameters. Most important attributes are
defined on Table 3.

Similar to Box, the registry is checked to find relevant keys
of the disk image. Most meaningful ones are SOFTWARE/
Classes/AppID/iCloudServices.EXE which specifies the
identification number assigned by the system to iCloud client
program when it was installed in the machine, SOFTWARE/
Classes/ iCloudServices.AccountInfo., providing additional
mapping of other iCloud-related registry keys within the
registry, SOFTWARE/Classes/Wow6432Node/AppID/iCloud
Services.EXE, being an alternative way to find the AppID of
the iCloud sync program., NTUSER/Software/Microsoft/
InternetExplorer/ TypedURLs containing URLs typed by the
user in Internet Explorer, and NTUSER/ Software/ Microsoft/

WindowsNT/CurrentVersion/AppCompatFlags/Compatibility
Assistant/ Persisted. which contains a list of files names
downloaded from the browse.

Table 4. iCloud metadata remnants

In case the sync program is installed within the browser,

the installation path (i.e. by default being \Program Files
(x86)\Common Files\Apple\Internet Services) contains
installation information. The synchronization program also
makes use of the AppData (under [user]/AppData/Local/Apple
Inc/iCloudDrive/) folder in order to store configuration
parameters and other useful information. It is of particular
interest the existence of SQLite databases. They are used to
provide different parameters regarding the user account, such
as account details or the synchronzed files within the cloud
server, e.g. images or text files. Finally, the acquisition of the
synchronization folder (by default located at
Users\[user]\iCloudDrive) presents synced files with the cloud
platform at the moment of the disk dump acquisition.

