
 
 
 

 
Abstract— Current forensic tools highly depend on the analyst 

awareness of evidences in order to retrieve them by means of a  
proactive search methodology. This paper presents MONOCLE, 
an open-source extensible framework for automated forensic 
analysis. MONOCLE provides automation over the forensic 
procedure by means of user-created plugins, reducing the 
complexity of evidence retrieval in target’s machine hard disk 
and memory. The software makes use of external tools such as 
the Volatility Framework in order to provide extended 
functionality to the executed plugins. To show the applicability of 
the proposal, in this paper MONOCLE is applied to two user-
side cloud storage scenarios -- iCloud and Box. Results show that 
MONOCLE is able to retrieve relevant information regarding 
end-users systems and cloud services interaction in the client 
machine. 

  
Keywords— computer forensics, analysis, memory forensics, 

software tools. 

I.  INTRODUCTION 

COMPUTER forensics has proved to be a key factor for 
criminal investigations and law enforcement, as IT devices are 
increasingly more present in our society [1]. Such procedures 
are of high importance not only in the elucidation of 
traditional criminal cases where new technologies are present 
as a helper tool for criminals to operate, but also in modern 
crimes where IT devices are the main platform (e.g. illegal 
distribution of copyrighted material or online fraud) [2].  

 In order to conduct such investigations law enforcers make 
use of a huge variety of forensic tools for the collection of 
evidences. This is of particular interest because most best 
forensic practices are standardized, so they can be done in an 
algorithmic way (e.g. evidence integrity maintenance, 
evidence classification or data carving). For example, Spanish 
UNE 71506 describes a forensic analysis methodology [3]. It 
is thus interesting to automate the collection of such elements 
in order to speed up the whole process.  

Most of the current forensic analysis tools (especially 
privative ones, such as EnCase [4]) provide an interactive 
interface to analyse the target system. By doing so the analyst 
is able to perform a proactive analysis to find where relevant 
information regarding the conducted case can be found. At the 
same time, an overview of the overall system state is provided. 
This can help the analyst to find new sources of information 

                                                             
J. Rodríguez-Canseco, J. M. de Fuentes, L. González-Manzano and A. 

Ribagorda are with the Computer Security Lab (COSEC) of  University 
Carlos III of Madrid (Spain).  

E-mail:  {jorrodri, jfuentes, lgmanzan, arturo}@inf.uc3m.es 
  

 

that he might not have appreciated at a first glance.  
There is, however, a disadvantage within this paradigm, 

namely the fact that the user has to manually select which 
elements to categorize as evidences. Whether this can be 
useful when conducting a non-deterministic case in which the 
procedure to retrieve the evidences or their nature are not 
clear, it is a tedious process when facing some cases in which 
the traces to be found are quite standardized (e.g. traces 
regarding the installation of a well-known program).  

Although some tools provide a way to extend and 
automatize user-defined procedures by means of scripts (e.g. 
[5], [6]), this is not straightforward. Furthermore, it usually 
implies buying a license for specialized programs. These 
issues together with the fact that technologies are becoming 
more complex as time goes by has also revealed some new 
challenges for forensic analysis tools, being cloud forensics a 
relevant one.  

Cloud services are becoming popular among companies 
and end users. The main reason is that a cloud environment 
allows the use of hybrid hardware and systems in order to set 
up virtual structures, which can be created, modified and 
destroyed on users demand. Cloud systems are traditionally 
structured into three main categories depending on the service 
model they provide, namely Software as a Service (SaaS), 
Platform as a Service (PaaS) and Infrastructure as a Service 
(IaaS) [7].  

Such structures include a brand new set of problems for 
law enforcers in order to conduct the analysis [8], which range 
from the geographical dispersion found within cloud service 
infrastructure (i.e. resulting in different jurisdictional issues) 
to the fact that physical machines might hold data from 
different individuals, (i.e. resulting into potential privacy and 
confidentiality problems). Several approaches have been 
tested as to overcome such issues [9]. There are differences 
however in the complexity involved within the analysis for 
each of the aforementioned services (SaaS, PaaS and SaaS). 

More specifically, cloud storage services based on a SaaS 
model present one of the most interesting targets for forensic 
analysis as the number of users and the amount of data in such 
platforms is increasing [10]. They also do provide a promising 
window for forensic analysts due to the fact that they tend to 
leave high numbers of data remnants in end users machines 
[11]. Such end users access these services by means of 
personal computers or mobile devices, which do not present 
the issues existing in cloud forensics.  

This context would make useful the existence of an open 
source tool able to conduct forensic procedures applying 
automated scripts. The existence of such software would avoid 
organizations and individuals affording the expensive licenses 
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of commercial forensic tools. 
This paper presents MONOCLE, an open source 

framework for forensic analysis implementing an extensible 
script-driven system. The software targets relevant sources of 
information on IT systems, such as volatile memory dumps 
and disk images. This framework is used afterwards to study a 
pair of user-side cloud scenarios in different platforms,  
namely iCloud [12] and Box [13]. This implies that several 
modules will be created both to test the effectiveness of the 
framework when targeting those scenarios and to study the 
scenarios as such. 

The structure of this paper is as follows: Section II present 
a summary of related work in the scope of forensic analysis 
tools and user-side cloud forensics. Section III introduces the 
necessary background knowledge to understand user-side 
cloud scenarios. Section IV presents the forensic analysis 
framework and its workflow at a high level. Section V depicts 
and describes the detailed design of the framework. In Section 
VI the application of the proposed framework to a user-side 
cloud scenario is presented. Section VII compares 
MONOCLE against existing tools. Finally, conclusions and 
future work is outlined in Section VIII.  

II.  RELATED WORK 

Previous research contributions have addressed cloud 
forensics and their peculiarities regarding traditional forensics 
problems, such as jurisdictional issues and privacy concerns. 
Most of this literature focuses on the study of the open 
problems and possible improvements in cloud structures rather 
than in the actual forensic analysis of cloud systems within the 
current architectures. Zawoad et al. [9], and Shah et al. [14] 
discuss the different problems inherent to cloud systems 
regarding digital forensics. Almulla et al. propose different 
approaches to provide forensics friendly cloud services [15], 
but such solutions require cloud service providers to adopt 
them and do not solve the problem in the short term scope. 

The increasing number of users of the SaaS cloud 
architectures in which data storage is offered as a service has 
motivated the research on this specific area. Quick et al. [16] 
provide an extensive listing of traces left on client machines 
by different cloud storage platforms, such as Dropbox [11], 
Google Drive [17] Microsoft SkyDrive [18] or ownCloud 
[19], found by means of different forensic tools. Such studies 
reveal the utility of client-side forensics in which they call 
Storage as a Service (StaaS) platforms. 

A.  On software tools 
Most commercial tools provide a wide set of procedures in 

order to recover data evidences, such as data carving [20] and 
memory data analysis [21]. These tools are implemented 
following an approach which requires the user interaction to 
retrieve items considered as evidences. This is done in  order 
to allow the required flexibility when conducting forensic 
investigations (i.e. as there are a broad number of 
interpretations an analyst might give to an evidence element 
depending on the context of the conducted case). 

Such tools can be classified in several ways depending on 
their nature, e.g. being commercial software or freeware. 
Commercial software tools are usually more complete than 
their free counterparts, and thus include a broader set of 
features. 

Among commercial tools, some of the most relevant ones 
due to the amount of provided features are EnCase Forensics 
[4] by Guidance Software, FTK (Forensic ToolKit) [22], from 
AccessData, or Pro Discover [23], from the ARC group of 
NY. Another interesting software due its relationship with the 
context discussed in the present paper is IEF (Internet 
Evidence Finder) [24], from Magnetic Forensics, as it 
performs forensic analysis of internet services. 

On the other hand, open source tools have a more limited 
scope in terms of analysis targets and capabilities. There exists 
however several powerful tools to perform forensic analysis, 
such as The Sleuth Kit [25], by Brian Carrier (disk image 
analysis), the Volatility Framework [26], by Volatility 
Foundation (memory analysis) or Simsong’s Bulk Extractor 
[27] (disk data carving). 

III.  CLOUD FORENSICS 

Cloud computing can be divided in two different parts, 
namely the front end, that is based on a client’s computer and 
the back end, which consists of one or multiple computers, 
servers and data storages [28]. Moreover, cloud servers may 
be used by huge amount of users or entities and the 
appropriate management has to be provided. Likewise, servers 
or data storages can be spread all over the world and their 
management has to be carried out according to laws 
established in their particular location as well as guaranteeing 
availability even when failures occur. 

 
Figure 1. MONOCLE in the cloud infrastructure 

 
Cloud systems are a popular choice due to their fast 

resource allocation and elasticity capabilities. They use hybrid 
hardware and virtualization to reduce overall costs [29]. 
Although this versatility is quite useful for companies, in 
terms of computer forensics the nature of the cloud 
environment makes difficult forensic analysis using traditional 
procedures. Besides, forensic analysis in cloud servers may 
become a burden due to their location and the amount of 
possible clients together with applicable laws. 

As aforementioned, given that cloud forensics is hard to 
analyze from the back end (server-side) point of view, 
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MONOCLE addresses computer forensics from the front end 
(client-side) perspective (see Figure 1). Data stored and 
managed in the cloud is accessed by clients, e.g. a browser or 
desktop application.  

 

A.  User-side cloud forensics 
Cloud storage platforms usually provide two different ways 

to access their services. The first one is the access by means of 
a web application using a web browser. Such application 
allows the user to remotely interact with stored data within the 
server. In addition to the web browser, most of cloud storage 
service providers have a synchronization client program which 
updates data on the server side based on changes performed at 
client-side. 

This interaction from the client-side exposes a series of 
evidences, which can be potentially meaningful for 
investigators. Three different levels of relationship between 
the user and the cloud service can be defined as to quantify the 
amount of potential evidences to be found during the analysis: 

 
• Access the cloud service through a web browser. Data 

remnants are found mainly within the web browser 
history and RAM memory.   

• Access the service through a cloud sync program. Data 
remnants are related to the installation and operations of 
the synchronization program. 

 
Different sets of artifacts can be elicited for each of the 

levels described. Such artifacts analysis provides a source of 
potential evidences. The relation amongst different artifacts 
will likely reveal meaningful information to the conducted 
investigation. 

Regarding what can be found in memory, one of the most 
relevant evidences to carve are the URLs associated to the 
web interface of the cloud services. Memory-mapped 
structures such as registry keys are also valuable as they might 
contain data regarding to the web browser (e.g. URLs recently 
typed and temporal files downloaded or visualized within the 
browser). 

The analysis of the disk image provides more information 
than memory analysis. Temporal files are stored in each web 
browser folders. All registry hives are usually present. The 
most interesting refers to traces left by a newly installed 
program which are easy to identify. In this context, the 
installation folder of the program, the different registry keys, 
which have been modified by the software, and all data the 
tool is syncing with the cloud service are potential sources of 
information. System logs are also valuable as they provide a 
way to track changes within the system. 

Once searched evidences to look for are stated, tools 
provided by MONOCLE can be applied as to retrieve the 
specific elements for each case.  

IV.  SYSTEM OVERVIEW 

A.  Goals 
In this section the main goals pursued in MONOCLE’s 

design are described. 
The main objective of the present paper is the creation of a 

utility framework (MONOCLE) for the development of 
automated analysis on third party target machines. Many of 
the current tools (recall Section II) in the forensic analysis 
field are either commercial software, or present a limited 
scope in terms of evidence sources. In this respect, the 
proposed tool would target main evidence sources present on 
IT devices, e.g. namely volatile memory dumps and disk 
images. 

In addition to that, most of tools do provide a proactive 
(interactive) search paradigm. This stands for the fact of the 
tool carving data in different areas, and presenting it to the 
analyst so as for him to select elements to categorize as 
evidence. This is a time-consuming process when facing data 
retrieval of well-known elements, such as program installation 
data or web access history. By contrast, MONOCLE provides 
a script-based analysis procedure. This implies that the 
analyst, targeting specific well-known elements, can code 
several modules. Such plugins can be reused in further 
investigations with minimum effort, speeding up the analysis 
process and reducing the analyst manual workload. In this 
respect, it is necessary for the tool to be extensible as to adapt 
new needs of the analyst. Besides, MONOCLE detects and 
loads seamessly new scan plugins (i.e. scripts) without 
incuring into extra efforts to the user. 

Due to this need of extensibility, the proposed software 
includes several utility tools which can be used in order to 
speed up the creation of plugins. Such utilities include 
automatic evidence management, RAM memory 
reconstruction, registry hives parsing, and visual timeline 
representation of results. 

Finally, the implementation of a GUI for the easy of use 
and the release of the tool under an open source license are 
also current objectives. 

B.  High level functionality 
The framework is intended to run user-created plugins, 

which will perform different analysis over the evidence 
sources. Although the user can create its own plugins, there is 
the possibility of download plugins created by other users. 

Monocle loads evidence sources from different data dumps. 
In its curret version MONOCLE process raw format RAM 
memory dumps and disk images. Once the user has selected 
an evidence source, it is necessary to state wether it is a Disk 
image or a memory dump. Plugins differ depending on the 
type of the source. Available plugins can be choosen by the 
user in order to execute them over the selected evidence 
source. 

A different process occurs in order for the framework to 
access each type of evidence source. Disk images are mounted 
using system-specific commands. This process is performed in 
read-only mode so as to preserve data integrity. Memory 



 
 
 

dump images are treated as regular files, being the user plugin 
the one choosing how to interact with them. 

Apart from functionalities provided by each user plugin, 
the framework performs, without the requirement of user 
interaction, some of the standardized tasks common to any 
digital crime scene investigation phase (e.g. integrity checking 
and secure storage of evidences) [30]. To do so an evidence 
manager has been developed and integrated in MONOCLE. 
This manager provides digital-feasible documentation of the 
evidence (e.g. retrieving data such as evidence location within 
the digital container or metadata) and evidence data recovery. 
Such recovery includes a copy of the evidence element (if 
possible) on a local directory within the analyst machine, as 
well as optional comments made by the analyst. Besides, 
evidence integrity is achieved by means of automatic 
computing of both MD5 and SHA1 checksums over the 
evidence element. 

MONOCLE provides additional tools which can be used 
during the scripts. Such tools are integrated within a simple 
interface as to simplify their usage. For this first version of the 
software, only one auxiliary tool for each target type will be 
implemented.  

Regarding memory-targeted modules, the Volatility 
Framework is applied to analyse such evidence dumps. The 
integration of this system within the present framework allows 
plugins to use the whole Volatility functionality over a 
simplified interface. Results coming from Volatility scripts are 
returned to the user script as a data array set. Regarding disk-
targeted scripts, Windows registry analyzer is one of the most 
useful tools. This allows the user plugin to be able to extract 
information from the Windows registry, which is one of the 
most interesting elements to analyze in Windows systems 
[31]. Python Registry library by Will Ballenthin [32] is 
applied in MONOCLE to provide such functionality. 

 

 
 

Figure 2. MONOCLE workflow 
 

Regarding the execution of the framework, plugins are 
executed once the user has selected both the plugin to run and 
the evidence digital container to analyze (e.g. either a disk 
image or a memory dump). Subsequently, the framework 
starts working in order to execute the chosen plugin. Figure 2 
depicts the general workflow of the framework when 
executing a user module. 

 The framework prepares the analysis environment in order 
to start the plugin (1) (e.g. evidence secure mounting and 
parameter parsing). Once the user plugin is executing, there 

are two possible ways interact with the evidence source, 
namely to accessing directly the evidence source (2), or 
making use of one of the built-in tools (3) through the 
framework interface (e.g. the Volatility Framework). This 
process can be repeated as many times as needed (4) until the 
analysis finishes. Finally (5) the evidence manager acts over 
each single evidence, providing integrity checking, local 
allocation and indexing such evidence to present a summary 
of the analysis. 

V.  SOFTWARE DESIGN 

Applied technology has to be carefully considered because 
it affects the internals of the system as well as framework 
scripts by applying a set of constraints over the plugin 
development procedure. The Python programming language 
has been chosen due to its versatility and cross-platform 
attributes. Python provides an effective fast-prototyping 
approach useful for further plugin development. MONOCLE 
has been coded using JetBrains’ PyCharm [33] development 
environment as to help in the organizing of the overall project.  

 
Regarding the functionality defined in the previous section, 

Figure 3 depicts MONOCLE components. The tool is divided 
into four components with well-defined functionality each. 

The main framework functionality is located in the Core 
component. This part of the system does not depend on the 
user modules employed. The Core component is in charge of 
loading the user modules to be executed within the 
framework, as well as the utility classes the user module can 
make use of. The SetupHandler component registers different 
analysis parameters, which can be parsed either by means of 
the GUI or through command line execution. It is also 
responsible for setting up MONOCLE’s required starting 
environment. The wrapper component within the core creates 
an abstraction layer for plugins and manages evidence data 
extracted by the modules. The loading procedure differs 
regarding target type of the module to load (i.e. either a 
memory dump or a disk image). Report management and 
evidence management data are parsed to the XMLParser 
component to generate summaries. 

The MemoryModule and HDModule are two different 
interfaces, used to load the user plugin. The main difference 
between them stands for the auxiliary tools to load. Whether a 
memory-targeted plugin (i.e. making use of the 
MemoryModule interface) is able to use the Volatility 
Framework by means of the VolActor component, a disk-
targeted plugin is only able to load the registry module by 
means of the RegistryActor component. Both module 
interfaces will create an EvidenceManager to process found 
evidences along plugins execution. 

Volatility Framework features are accessed through the 
VolActor component, which is in charge of loading and 
automatically configuring the Volatility Framework into the 
Monocle Framework. This component can be loaded on 
demand by an plugin during its execution, and it provides 
auxiliary functions with methods to call the different Volatility 
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Plugins included in the Volatility installation framework. 
Memory type identification is performed if unknown. The 
RegistryActor works similarly with the Python Registry 
plugin, providing commodity methods as to retrieve data from 
memory hives.  

Users have freedom to code the plugin as desired. The only 
requirements is to include MONOCLE’s libraries in the plugin 
code and inherit from either a HDModule or a MemoryModule 
to use specific module tools (e.g. VolActor, RegistryActor, 
EvidenceManager).  

VI.  EVALUATION  

This section first compares the features provided by 
existing well-known tools with the ones provided by 
MONOCLE (Section A). Secondly, Secondly, MONOCLE is 
applied in a pair of cloud scenarios, namely, iCloud and Box. 
Lastly, a performance evaluation in regard to both previous 
scenarios is presented (Section B). Lastly, a performance 
evaluation in regard to both previous scenarios (Section C). 

A.  Goals analysis comparison 
This comparison is performed according to the different 

features stated in the pursued objectives (Section IV.a): 
 
• Privative Software. Whether the software is a free-to-use 

tool or a commercial one.  MONOCLE is an open-source 
(free of charge) software. 

• GUI Interface Available. Whether the interaction with 
the tool can be performed by means of a graphical user 
interface or not. Our framework provides a GUI, namely 
by MonocleGUI component (see Section V). 

• Target. Whether the tool targets memory dumps or disk 
images as evidences sources.  MONOCLE targets both 
memory dumps and disk images in RAW format. 

• Interactivity / Proactive analysis. Whether the tool 

allows the analyst to operate over the results and to 
perform different analysis over the image in a non-
deterministic way. This is the opposite of a scripting 
deterministic analysis where the tool has a predefined set 
of operations. MONOCLE focuses in script-based 
analysis. 

• Scripting Capability. Whether the tool has the capability 
of execute user-defined scripts, which perform different 
analysis or procedures sequentially without user 
interaction. MONOCLE is script driven. 

• Extensibility. Whether the original functionality of the 
system can be enhanced by means of tools provided by 
the system itself. MONOCLE’s scripting-based nature 
provides extensibility to the framework. 

• Extensibility type. How extensibility is performed within 
the given application if the application allows for an 
extensible behavior. MONOCLE provides extensibility as 
it allows to include new plugins on the fly. 

 
There are hybrid combinations of such features depending 

on the tool. Table 3 depicts the analyses.  
EnCase Forensic, developed by Guidance Software [4], 

provides a broad number of utilities, such as data carving, and 
automatic generation of reports. EnCase also counts with its 
own scripting language in order to automate different tasks 
and extend its functionality depending on the analyst needs. 
EnCase is however a commercial software. Another 
interesting yet similar tool is FTK [22] by AccessData. This 
tool provides similar functionality as EnCase and it allows 
visualization of data in real time, multiple source image 
detection and automatic password recovery from a big set of 
applications, among others. Like EnCase, FTK is a non-free 
application.  

Figure 3.  MONOCLE High level decomposition diagram 
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Internet Evidence Finder (IEF), by Magnetic Forensics, is a 

specialized tool focused on the discoverage of data remnants 
of Internet services, such as email, web navigation and cloud-
based storage. Alhough quite complete, this is yet another 
commercial tool. 

Regarding open-source forensic software, The Volatility 
Framework is another interesting tool. It provides memory 
forensics services off the shelf, such as open connections 
enumeration and running processes carving. Although 
Volatility was initially a framework to perform analysis over 
memory dumps on Windows machines, contributions from the 
open source community allows now Volatility to target also 
some versions of Linux and Mac OSX. Volatility also offers a 
plugin-oriented execution model, allowing its extensibility 
with new functionalities by means of user scripts written in 
Python. However, Volatility Framework scope does not 
involve disk images analysis and a different tool should be 
used in this regard, e.g. Sleuth Kit [25] is one of the most 
popular ones. 

The Sleuth Kit (TSK)  consists of a set of tools for forensic 
investigations over disk images. TSK is an open-source 
project whose functionality can be used by means of a library 
or executed as a standalone application. A GUI  for TSK is 
provided by Autopsy [34] project, by Basis Technology. It is 
however focused only on disk images, not being able to relate 
memory artifacts to the conducted investigation. 

When coming to analyze each of these tools, differences 
between commercial software and open-source projects are 
quite noticeable in terms of scope. Whether commercial 
software usually targets more than one evidence source (e.g. 
RAM memory and disk artifacts), open source projects usually 
target a single source because resources are more limited.  

Additionally, MONOCLE provides better low level 
analysis of the results, as found evidences can be 
automatically classified and processed. If the applied plugin 
already exists, the analyst can execute it without dealing with 
low level details. This saves time and effort in the 
investigation process. Besides, MONOCLE provides users the 
ability to easily create new plugins if needed. 

B.  Application to cloud scenarios 
MONOCLE is flexible enough to perform a wide variety of 

types of analysis. It depends on the user module being 
executed. In the present context, it is used in a user-side cloud 
scenario namely in iCloud [12] and in Box [13] cloud storage 
services. The objective is to analyze the interaction with the 
storage services by analizing disk and memory dumps of 
client’s machine.  

 
    1)  Definition of the scenarios 

Two different cloud platforms are evaluated to prove the 
suitability of the framework for the cloud-based scenario, 
namely iCloud, by Apple Inc. and the cloud service of Box. 
Two different modules re developed for each scenario, one 
focused on RAM memory and another one focus of disk 
remnants. The objective of the investigation is to prove the 
interaction between the user and the cloud service, and to 
retrieve as much information as possible (i.e. downloads, 
visits, hosted files).   

The preparation of these analyses follows a similar 
approach to the one proposed by Quick et al. [11], [17], [18]. 
Both analyses are conducted under a Windows 7 x64 system 
emulated through a VMWare Virtual Machine. No additional 
software is installed except for the web browser (i.e. namely 
Internet Explorer 11) which is used to test the web clients of 
the different platforms and the installation of the platform 
third party client on each case. Accounts for the different 
platforms are created outside the virtual machines, limiting the 
interaction of the user to a single connection to the service in 
order to either view the files or download and install the client. 
From each virtual machine, the RAM memory and the virtual 
hard disk are analyzed as raw dumps. 

 
    2)  Identification of the traces 

Traces to be found in both scenarios involve several 
different elements, ranging from URLs with specific formats 
(e.g. all Box cloud services URLs have a fixed starting pattern 
of the form app.box.com) to SQLite databases and 
configuration files containing information for each specific 
platform. 

Cloud-related traces are particularly noticeable when using 

Table 1.  Comparision of different tools regarding their usability and extensibility features. 



 
 
 

a synchronization program. Installation fingerprint can be 
found in the Registry, Windows Logs and other control 
elements present on a Windows system. Such installation also 
involves the creation of the synchronization folder, which 
potentially contains elements residing in the cloud storage 
platform. 

The implementation of MONOCLE’s scripts to recover 
evidences requires, it is necessary to take into account all 
traces and to specify them in the plugin in order for 
MONOCLE to find them. The complete set of traces found for 
both scenarios is described in Appendix I. 

 
    3)  Implementation of the plugins 

Memory analysis can be performed either by means of the 
Volatility Framework or by manually carving files contained 
in the memory dump. The chosen approach depends on the 
existence or not of a running web browser process. If a web 
process exists, it is possible to acquire the reconstructed 
allocated memory of such process applying Volatility’s 
MemDump plugin. It allows the reconstruction of the 
fragmented memory belonging to the process in a 
continuously allocated dump. Search of URL’s can be then 
performed over this reconstructed memory space. In case the 
process cannot be found, the whole memory dump has to be 
carved as to find those URLs. 

Volatility also provides a way to retrieve Internet Explorer 
history if the process was running when the memory was 
acquired (i.e. namely IEHistory plugin). Finally, registry keys 
mapped into memory are extracted using the hivescan, hivelist 
and printkey modules. 

Regarding the analysis of the disk drive, Monocle 
automatically tries to mount the targeted disk. Once it is 
mounted, the plugin starts running and marks as evidences 
chosen files, folders and elements through the 
EvidenceManager. This module translates paths to the local 
equivalent within the disk. All evidences retrieved in this way 
can either be manually labeled by the user, or automatically be 
classified by the EvidenceManager. Moreover, the 
EvidenceManager automatically calculates integrity 
checksums for all found evidence elements, and stores them in 
a secure folder within the host system. 

Registry keys can be easily parsed and analyzed by means 
of the Python-Registry library integrated within the 
framework. MONOCLE implements an interface to such 
library to provide the user with straightforward functions able 
to retrieve the Registry keys by just specifying the path to the 
registry hive and the desired key (or sub-keys) to extract.  

C.  Performance evaluation 
Concerning previous scenarios (iCloud and Box), the 

overhead caused by MONOCLE is measured. Specifically, 
time measurements from states of the execution are studied. 
MONOCLE execution workflow is divided in three main 
phases, (recall Figure 2). The first phase (wrapper pre-setup) 
consists of setting up MONOCLE’s environment and 
mounting the evidence digital containers. The second phase 
(module execution) is the execution of the plugin. In the last 

phase (wrapper post-setup) the EvidenceManager processes 
evidences found in the second phase and presents the results to 
the user. 

Table 2 shows times for plugins described in Section VI.B. 
to analyse disk and memory for Box and iCloud. Modules use 
MONOCLE tools to retrieve evidences. In addition, a Box 
memory plugin not using Volatility was created to show 
Volatility’s overhead during execution.   
 

 
Table 2. iCloud metadata remnants 

 
Results show that executed plugins leverage overall 

running time, which implies MONOCLE’s overhead is almost 
neglectable regarding execution times. This overhead is more 
noticeable for disk modules, 57,3% and 15,6% of the overall 
time for Box and iCloud respectively. Memory-targeted 
modules reconstruct the memory address space of the machine 
(if using Volatility) and perform a complete scan of the 
memory dump. Such operational charge results in higher 
module execution time than for disk modules. MONOCLE’s 
overhead is thus small in memory modules, being 1,8% for 
Box module running Volatility and 0,6% for the one not using 
Volatility. MONOCLE’s overhead on iCloud memory module 
is 1,25%. Disk-targeted plugins overhead seems higher than 
memory ones. This fact is because disk plugins neither 
perform data carving nor have to search the entire digital 
container. 

Significant differences exist between times of the module 
execution phase, as this stage depends directly on executed the 
plugin. It is interesting to notice the overhead of using 
Volatility on a memory targeted plugin, e.g. Box plugin not 
using Volatility is 8 times quicker than the version using 
Volatility to reconstruct the memory space. 

VII.  CONCLUSIONS AND FUTURE WORK 

In this paper MONOCLE, a framework for forensic 
analysis on a plugin-based execution model is presented. This 
framework is intended to provide fast prototyping of efficient 
forensic analysis over well-known structures by the use of 
plugins. Its functionality is apply to evaluate user-side cloud 
storage scenarios in two particular cases, namely iCloud and 
Box. This evaluation has additionally proved the importance 
of such remnants regarding cloud-based storage, as several 
traces relating the user and the platform are to be found in the 
client machine. 

Our proposed tool is on its very first development stage. 
There are thus several improvements to be apply. The 



 
 
 

inclusion of the TSK Framework within MONOCLE, so as to 
provide all the functionality available in such open source tool 
is a future enhancement. The disk carving capabilities of TSK 
and the automated evidence mounting of corrupted images are 
features of interest concerning the improvement of disk 
images plugins. The processing of proprietary and compressed 
evidence sources is currently out of the scope of this tool 
regarding its first version. Support for different formats is a 
future objective for MONOCLE. The inclusion of plugin-
sharing capabilities of the framework by creating a centralized 
knowledge base where plugins can be uploaded and 
downloaded by different users is another matter to address in 
the future. This would reduce time and effort and facilitate 
collaboration among different analysts. 
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APPENDIX I 

This appendix presents evidences discovered by 
MONOCLE’s plugins described in Section VI.C. 

A.  Data remnants in Box cloud storage 
Box cloud services provide storage capabilities within the 

cloud. Users can use the service by registering with an email 
account. This section presents traces left on client’s machines 
memory and disk when accessing Box services. 

Box cloud services URLs have a fixed starting pattern of 
the form app.box.com. The existence of this sole URL in the 
web browser memory address is not enough to state that there 
is a relationship between the user and the platform. This URL 
can also be found in the registry hives storing the recent 
visited URL. The extraction of them can be done by means of 
the Volatility Framework too, as it includes a plugin to 
retrieve registry hives mapped into memory. Registry keys can 
be accessed more easily from the disk as their location is well 
known.. 

Box URLs are however meaningful by their sole 
composition. The structure of Box web cloud service 
organizes all files previewed with a URL of the form 
app.box.com/files/0/f/0/1/f_[ID], where ID is a numerical 
value assigned by Box to the stored files. This identifier 
allows referencing such files within the memory dump. 

Further analysis shows that the file metadata stored within 
the platform is sent to the browser in the form of a JSON 
structure. This structure has several meaningful fields such as 
the file ID and the file owner ID. Most relevant fields are 
depicted in Table 2. 

The analysis of disk artifacts comprehend hosted disk files 
(i.e. images, text files...) as well as registry hives and temporal 
cached elements.  

Study of memory artifacts already unveiled some traces 
present in the disk too. As part of files metadata, it is 
interesting to look at the image tag, which represents the name 
of the temporal file cached in the web browser temporal 
folder. By looking for such name in the aforementioned 
location, files metadata and the files themselves are found. 

The registry hives are also a potential source of information 
here. Some of them are of particular interest, such as 
SOFTWARE\Box\BoxSync\InstallID, which specifies the 
identification number assigned by the system to the sync 
program when it was installed in the machine, SOFTWARE\ 
Box\BoxSync\InstallID\InstallPath, which specifies the path 
of the Box Sync installation files within the system. NTUSER\ 
Software\Microsoft Internet Explorer\TypedURLs, containing 
URLs typed by the user in Internet Explorer and NTUSER\ 
Software\Microsoft\WindowsNT\CurrentVersion\AppCompat
Flags\CompatibilityAssistantPersisted, which contains a list of 
files names downloaded from the browser. 

In case the sync program is installed within the browser, 
the installation path (i.e. by default ProgramFiles\Box\Box 



 
 
 

Sync) contains installation information. Specific elements of 
the user configuration are located under \Users\[user] 
\AppData\Local\BoxSync folder. This folder contains Box’s 
own logs and SQLite databases with the synced files. Besides, 
Box Sync folder is available too (i.e. by default under 
\Users\[user]\Box Sync path.), containing all the synced files. 

 

 
Table 3. Box metadata remnants 

 

B.  Data Remnants in iCloud cloud storage 
Data can be extracted from the web browser process 

memory address, this finding mapped files or URLs of the 
iCloud service. Following the same approach as in Box, 
though being more complex, an authorization token is 
requested for each single file. These tokens are invalidated 
after a certain amount of time, and are given to iCloud web 
API through HTTP. The requests to iCloud web also contain a 
set of attributes as parameters. Most important attributes are 
defined on Table 3.  

Similar to Box, the registry is checked to find relevant keys 
of the disk image. Most meaningful ones are SOFTWARE/ 
Classes/AppID/iCloudServices.EXE which specifies the 
identification number assigned by the system to iCloud client 
program when it was installed in the machine,  SOFTWARE/ 
Classes/ iCloudServices.AccountInfo., providing additional 
mapping of other iCloud-related registry keys within the 
registry, SOFTWARE/Classes/Wow6432Node/AppID/iCloud 
Services.EXE, being an alternative way to find the AppID of 
the iCloud sync program., NTUSER/Software/Microsoft/ 
InternetExplorer/ TypedURLs containing URLs typed by the 
user in Internet Explorer, and NTUSER/ Software/ Microsoft/ 

WindowsNT/CurrentVersion/AppCompatFlags/Compatibility
Assistant/ Persisted. which contains a list of files names 
downloaded from the browse. 
 

 
Table 4. iCloud metadata remnants 

 
In case the sync program is installed within the browser, 

the installation path (i.e. by default being \Program Files 
(x86)\Common Files\Apple\Internet Services) contains 
installation information. The synchronization program also 
makes use of the AppData (under [user]/AppData/Local/Apple 
Inc/iCloudDrive/) folder in order to store configuration 
parameters and other useful information. It is of particular 
interest the existence of SQLite databases. They are used to 
provide different parameters regarding the user account, such 
as account details or the synchronzed files within the cloud 
server, e.g. images or text files. Finally, the acquisition of the 
synchronization folder (by default located at 
Users\[user]\iCloudDrive) presents synced files with the cloud 
platform at the moment of the disk dump acquisition. 


